Effect of oxygen tension on tissue-engineered human nasal septal chondrocytes

نویسندگان

  • Chih-Wen Twu
  • Marsha S. Reuther
  • Kristen K. Briggs
  • Robert L. Sah
  • Koichi Masuda
  • Deborah Watson
چکیده

Tissue-engineered nasal septal cartilage may provide a source of autologous tissue for repair of craniofacial defects. Although advances have been made in manipulating the chondrocyte culture environment for production of neocartilage, consensus on the best oxygen tension for in vitro growth of tissue-engineered cartilage has not been reached. The objective of this study was to determine whether in vitro oxygen tension influences chondrocyte expansion and redifferentiation. Proliferation of chondrocytes from 12 patients expanded in monolayer under hypoxic (5% or 10%) or normoxic (21%) oxygen tension was compared over 14 days of culture. The highest performing oxygen level was used for further expansion of the monolayer cultures. At confluency, chondrocytes were redifferentiated by encapsulation in alginate beads and cultured for 14 days under hypoxic (5 or 10%) or normoxic (21%) oxygen tension. Biochemical and histological properties were evaluated. Chondrocyte proliferation in monolayer and redifferentiation in alginate beads were supported by all oxygen tensions tested. Chondrocytes in monolayer culture had increased proliferation at normoxic oxygen tension (p = 0.06), as well as greater accumulation of glycosaminoglycan (GAG) during chondrocyte redifferentiation (p < 0.05). Chondrocytes released from beads cultured under all three oxygen levels showed robust accumulation of GAG and type II collagen with a lower degree of type I collagen immunoreactivity. Finally, formation of chondrocyte clusters was associated with decreasing oxygen tension (p < 0.05). Expansion of human septal chondrocytes in monolayer culture was greatest at normoxic oxygen tension. Both normoxic and hypoxic culture of human septal chondrocytes embedded in alginate beads supported robust extracellular matrix deposition. However, GAG accumulation was significantly enhanced under normoxic culture conditions. Chondrocyte cluster formation was associated with hypoxic oxygen tension.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of oxygen tension on human articular chondrocyte matrix synthesis: Integration of experimental and computational approaches

Significant oxygen gradients occur within tissue engineered cartilaginous constructs. Although oxygen tension is an important limiting parameter in the development of new cartilage matrix, its precise role in matrix formation by chondrocytes remains controversial, primarily due to discrepancies in the experimental setup applied in different studies. In this study, the specific effects of oxygen...

متن کامل

Age dependence of cellular properties of human septal cartilage: implications for tissue engineering.

BACKGROUND The persistent need for cartilage replacement material in head and neck surgery has led to novel cell culture methods developed to engineer cartilage. Currently, there is no consensus on an optimal source of cells for these endeavors. OBJECTIVES To evaluate human nasal cartilage as a potential source of chondrocytes and to determine the effect of donor age on cellular and prolifera...

متن کامل

Protective Effects of Interleukin-4 on Tissue Destruction and Morphological Changes of Bovine Nasal Chondrocytes in vitro

Background: Previous studies have shown that some cytokines have protective effects on cartilage in joint diseases. In the current study, effects of IL-4 against morphological changes and tissue degradation induced by IL-1α on bovine nasal cartilage (BNC) explants were investigated. Methods: Fresh BNC samples were prepared from a slaughterhouse under sterile conditions. BNC explants culture was...

متن کامل

Synoviocyte Derived-Extracellular Matrix Enhances Human Articular Chondrocyte Proliferation and Maintains Re-Differentiation Capacity at Both Low and Atmospheric Oxygen Tensions

BACKGROUND Current tissue engineering methods are insufficient for total joint resurfacing, and chondrocytes undergo de-differentiation when expanded on tissue culture plastic. De-differentiated chondrocytes show poor re-differentiation in culture, giving reduced glycosaminoglycan (GAG) and collagen matrix accumulation. To address this, porcine synoviocyte-derived extracellular matrix and low (...

متن کامل

In vivo oxygen tension in human septal cartilage increases with age.

OBJECTIVES/HYPOTHESIS Tissue-engineered septal cartilage may provide a source of autologous cartilage for repair of nasal defects. Production of clinically useful neocartilage involves multiple steps that include manipulating the culture environment. Partial pressure of oxygen (ppO(2) ) is a property that has been shown to influence cartilage development. Specifically, studies suggest low ppO(2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014